全一卷
1.|-2015|等于()
A.2015 | B.-2015 | C.±2015 | D. |
2.餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为( )
A.5×1010千克 | B.50×109千克 | C.5×109千克 | D.0.5×1011千克 |
3.下列立体图形中,俯视图是正方形的是( )
A. | B. | C. | D. |
4.点P(-2,-3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为( )
A.(-3,0) | B.(-1,6) | C.(-3,-6) | D.(-1,0) |
5.若一元二次方程x2-2x-m=0无实数根,则一次函数y=(m+1)x+m-1的图象不经过第( )象限.
A.四 | B.三 | C.二 | D.一 |
6.如图,点O是矩形ABCD的中心,E是AB上的点,折叠后,点B恰好与点O重合,若BC=3.则折痕CE的长为()
A. | B. | C. | D.6 |
7.三角形两边的长是3和4,第三边的长是方程x2-12x+35=0的根,则该三角形的周长为( )
A.14 | B.12 | C.12或14 | D.以上都不对 |
8.如图,□ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于( )
A.3:2 | B.3:1 | C.1:1 | D.1:2 |
9.如图⊙O的直径垂直于弦,垂足是,,,的长为( )
A. | B.4 | C. | D.8 |
10.如图为二次函数y=ax2+bx+c (a≠0)的图象,则下列说法:①a>0 ②2a+b=0 ③a+b+c>0 ④ 当-1<x<3时,y>0 其中正确的个数为()
A.1 | B.2 | C.3 | D.4 |
11.的平方根是 .
12.计算:· .
13.分解因式:_____ .
14.一组数据2,3,x,5,7的平均数是4,则这组数据的众数是 .
15.不等式组的最小整数解是 .
16.如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是 ▲ (结果保留π).
17.如图,正方形ABCD的边长为4,E为BC上的一点,BE=1,F为AB上的一点,AF=2,P为AC上的一个动点,则PF+PE 的最小值为______________
18.如图所示是一组有规律的图案,第l个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n(n是正整数)个图案中的基础图形个数为_______ (用含n的式子表示).
19.(本题8分)计算:
20.先化简,再求值:,其中.
21.“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?
22. 如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于A(2,3)、B(,n)两点.
(1)求一次函数和反比例函数的解析式;
(2)若P是轴上一点,且满足△PAB的面积是5,直接写出OP的长.
(1)求一次函数和反比例函数的解析式;
(2)若P是轴上一点,且满足△PAB的面积是5,直接写出OP的长.
23.某学校为了增强学生体质,决定开设以下体育课外活动项目:A:篮球 B:乒乓球C:羽毛球 D:足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:
(1)这次被调查的学生共有 人;
(2)请你将条形统计图(2)补充完整;
(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)
(1)这次被调查的学生共有 人;
(2)请你将条形统计图(2)补充完整;
(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)
24.如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF//AB交AC于F
(1)求证:AE=DF,
(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.
(1)求证:AE=DF,
(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.
25.如图,等腰三角形ABC中,AC=BC=10,AB=12,以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E.
(1)求证:直线EF是⊙O的切线;
(2)求cos∠E的值.
(1)求证:直线EF是⊙O的切线;
(2)求cos∠E的值.
26.如图,抛物线与直线AB交于点A(-1,0),B(4,).点D是抛物线A,B两点间部分上的一个动点(不与点A,B重合),直线CD与y轴平行,交直线AB于点C,连接AD,B
A. (1)求抛物线的解析式; (2)设点D的横坐标为m,△ADB的面积为S,求S关于m 的函数关系式,并求出当S 取最大值时的点C的坐标; |