全一卷
1.2的倒数是( )
A.2 | B. | C. | D.-2 |
2.下列运算中,结果是a4的是
A. | B. | C. | D. |
3.下列说法正确的是( )
A.“明天降雨的概率是60%”表示明天有60%的时间都在降雨 |
B.“抛一枚硬币正面朝上的概率为50%”表示每抛2次就有一次正面朝上 |
C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖 |
D.“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在附近 |
4.某几何体的三视图如图所示,则这个几何体是( )
A.三棱柱 | B.圆柱 | C.正方体 | D.三棱锥 |
5.下列图形中,由AB∥CD,能得到∠1=∠2的是( )
A. | B. | C. | D. |
6.一个多边形的每个内角均为108º,则这个多边形是( )
A.七边形 | B.六边形 | C.五边形 | D.四边形 |
7.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()
A.50° | B.60° | C.70° | D.80° |
8.方程的根可视为函数的图象与函数的图象交点的横坐标,则方程的实根x0所在的范围是( )
A. | B. | C. | D. |
9.据了解,截止2013年5月8日,扬泰机场开通一年,客流量累计达到450000人次,数据450000用科学记数法可表示为_______ .
10.分解因式:___ .
11.在温度不变的条件下,一定质量的气体的压强p与它的体积V成反比例,当V=200时,p=50,则当p=25时,V=_______ .
12.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有________ 条鱼.
13.在中,AB=AC=5,sin∠ABC=0.8,则BC=_______ .
14.如图,在梯形ABCD中,AD∥BC,AB=AD=CD,BC=12,∠ABC=60°,则梯形ABCD的周长为________ .
15.如图,在扇形OAB中,∠AOB=100°,半径OA=18,将扇形OAB沿过点B的直线折叠,点O恰好落在上的点D处,折痕交OA于点C,则的长为 .
16.已知关于x的方程的解是负数,则n的取值范围为_______ .
17.矩形的两邻边长的差为2,对角线长为4,则矩形的面积为 .
18.如图,已知的直径,E、F为的三等分点,M、N为上两点,且,则_______ .
19.(1)计算:;
(2)先化简,再求值:,其中x=-2.
(2)先化简,再求值:,其中x=-2.
20.已知关于x、y的方程组 的解满足x>0,y>0,求实数a的取值范围.
21.端午节期间,扬州某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇形区域里分别标有“10元”、“20元”、“30元”、“40元”的字样(如图).规定:同一日内,顾客在本商场每消费满100元就可以转动转盘一次,商场根据转盘指针指向区域所标金额返还相应数额的购物券,某顾客当天消费240元,转了两次转盘.
(1)该顾客最少可得 元购物券,最多可得 元购物券;
(2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率.
(1)该顾客最少可得 元购物券,最多可得 元购物券;
(2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率.
22.为声援扬州“运河申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包含9分)为优秀.这次竞赛中甲乙两组学生成绩分布的条形统计图如图所示.
(1)补充完成下面的成绩统计分析表:
(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是 组的学生;(填“甲”或“乙”)
(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.
(1)补充完成下面的成绩统计分析表:
组别 | 平均分 | 中位数 | 方差 | 合格率 | 优秀率 |
甲组 | 6.7 | 3.41 | 90% | 20% | |
乙组 | 7.5 | 1.69 | 80% | 10% |
(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是 组的学生;(填“甲”或“乙”)
(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.
23.如图,在△ABC中,∠ACB=90°,AC=BC,点D在边AB上,连接CD,将线段CD绕点C顺时针旋转90°至CE位置,连接AE
(1)求证:AB⊥AE;
(2)若BC2=AD•AB,求证:四边形ADCE为正方形.
(1)求证:AB⊥AE;
(2)若BC2=AD•AB,求证:四边形ADCE为正方形.
24.某校九(1)、九(2)两班的班长交流了为四川安雅地震灾区捐款的情况:
(Ⅰ)九(1)班班长说:“我们班捐款总数为1200元,我们班人数比你们班多8人.”
(Ⅱ)九(2)班班长说:“我们班捐款总数也为1200元,我们班人均捐款比你们班人均捐款多20%.”
请根据两个班长的对话,求这两个班级每班的人均捐款数.
(Ⅰ)九(1)班班长说:“我们班捐款总数为1200元,我们班人数比你们班多8人.”
(Ⅱ)九(2)班班长说:“我们班捐款总数也为1200元,我们班人均捐款比你们班人均捐款多20%.”
请根据两个班长的对话,求这两个班级每班的人均捐款数.
25.如图,△ABC内接于⊙O,弦AD⊥AB交BC于点E,过点B作⊙O的切线交DA的延长线于点F,且∠ABF=∠ABC.
(1)求证:AB=AC;
(2)若AD=4,cos∠ABF= ,求DE的长.
(1)求证:AB=AC;
(2)若AD=4,cos∠ABF= ,求DE的长.
26.如图,抛物线交y轴于点A,交x轴正半轴于点
A. (1)求直线AB对应的函数关系式; (2)有一宽度为1的直尺平行于x轴,在点A、B之间平行移动,直尺两长边所在直线被直线AB和抛物线截得两线段MN、PQ,设M点的横坐标为m,且0<m<3.试比较线段MN与PQ的大小. |
27.如图1,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1,BC=m,P为线段BC上的一动点,且和B、C不重合,连接PA,过P作PE⊥PA交CD所在直线于
(1)求y与x的函数关系式;
(2)若点P在线段BC上运动时,点E总在线段CD上,求m的取值范围;
(3)如图2,若m=4,将△PEC沿PE翻折至△PEG位置,∠BAG=90°,求BP长.
A.设BP=x,CE=y. |
(1)求y与x的函数关系式;
(2)若点P在线段BC上运动时,点E总在线段CD上,求m的取值范围;
(3)如图2,若m=4,将△PEC沿PE翻折至△PEG位置,∠BAG=90°,求BP长.
28.如果10b=n,那么b为n的劳格数,记为b=d(n),由定义可知:10b=n与b=d(n)所表示的b、n两个量之间的同一关系.
(1)根据劳格数的定义,填空:d(10)= ,d(10-2)= ;
(2)劳格数有如下运算性质:
若m、n为正数,则d(mn)=d(m)+d(n),d()=d(m)-d(n).
根据运算性质,填空:= (a为正数),若d(2)=0.3010,则d(4)= ,d(5)= ,d(0.08)= ;
(3)如表中与数x对应的劳格数d(x)有且只有两个是错误的,请找出错误的劳格数,说明理由并改正.
(1)根据劳格数的定义,填空:d(10)= ,d(10-2)= ;
(2)劳格数有如下运算性质:
若m、n为正数,则d(mn)=d(m)+d(n),d()=d(m)-d(n).
根据运算性质,填空:= (a为正数),若d(2)=0.3010,则d(4)= ,d(5)= ,d(0.08)= ;
(3)如表中与数x对应的劳格数d(x)有且只有两个是错误的,请找出错误的劳格数,说明理由并改正.
x | 1.5 | 3 | 5 | 6 | 8 | 9 | 12 | 27 |
d(x) |