全一卷
1.的相反数是( )
A. | B. | C. | D. |
2.已知∠A=65°,则∠A的补角的度数是
A.15° | B.35° | C.115° | D.135° |
3.百色市人民政府在2013年工作报告中提出,今年将继续实施十项为民办实事工程.其中教育惠民工程将投资2.82亿元,用于职业培训、扩大农村学前教育资源、农村义务教育学生营养改善计划、学生资助等项目.那么数据282 000 000用科学记数法(保留两个有效数字)表示为
A.2.82×108 | B.2.8×108 | C.2.82×109 | D.2.8×109 |
4.下列运算正确的是
A.2a+3b=5ab | B.3x2y-2x2y=1 | C.(2 a2)3=6a6 | D.5x3÷x2=5x |
5.一个几何体的三视图如图所示,则该几何体的侧面展开图的面积为
A.6cm2 | B.4πcm2 | C.6πcm2 | D.9πcm2 |
6.在反比例函数中,当x>0时,y随x的增大而增大,则二次函数y=m x2+m x的图象大致是下图中的( )
A. | B. | C. | D. |
7.今年我市某县6月1日到10日的每一天最高气温变化如折线图所示,则这10个最高气温的中位数和众数分别是( )
A.33℃ 33℃ | B.33℃ 32℃ | C.34℃ 33℃ | D.35℃ 33℃ |
8.如图,在⊙O中,直径CD垂直于弦AB,若∠C=25°,则∠ABO的度数是( )
A.25° | B.30° | C.40° | D.50° |
9.如图,在平行四边形ABCD中,AB>BC,按以下步骤作图:以A为圆心,小于AD的长为半径画弧,分别交AB、CD于E、F;再分别以E、F为圆心,大于EF的长半径画弧,两弧交于点G;作射线AG交CD于点H.则下列结论:①AG平分∠DAB,②CH=DH,③△ADH是等腰三角形,④S△ADH=S四边形ABCH.
其中正确的有( )
其中正确的有( )
A.①②③ | B.①③④ | C.②④ | D.①③ |
10.不等式组的解集在数轴上表示正确的是
A. | B. | C. | D. |
11.如图,在矩形纸片ABCD中,AB=4,AD=3,折叠纸片使DA与对角线DB重合,点A落在点A′处,折痕为DE,则A′E的长是()
A.1 | B. | C. | D.2 |
12.如图,在平面直角坐标系中,直线l:y=x+1交x轴于点A,交y轴于点B,点A1、A2、A3,…在x轴上,点B1、B2、B3,…在直线l上.若△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,则△A5B6A6的周长是( )
A.24 | B.48 | C.96 | D.192 |
13.4的算术平方根是_____ .
14.若函数有意义,则自变量x的取值范围是_______ .
15.如图,菱形ABCD的周长为12cm,BC的垂直平分线EF经过点A,则对角线BD的长是 。
16.某校对去年毕业的350名学生的毕业去向进行跟踪调查,并绘制出扇形统计图(如图所示),则该校去年毕业生在家待业人数有_______ 人.
17.如图,在方格纸中,每个小方格都是边长为1cm的正方形,△ABC的三个顶点都在格点上,将△ABC绕点O逆时针旋转90°后得到(其中A、B、C的对应点分别为),则点B在旋转过程中所经过的路线的长是 cm.(结果保留π)
18.如图,在边长10cm为的正方形ABCD中,P为AB边上任意一点(P不与A、B两点重合),连结DP,过点P作PE⊥DP,垂足为P,交BC于点E,则BE的最大长度为 cm.
19.计算:
20.先化简,再求值:,其中a=-1,b=.
21.如图,在等腰梯形ABCD中,DC∥AB,E是DC延长线上的点,连接AE,交BC于点
A. (1)求证:△ABF∽△ECF (2)如果AD=5cm,AB=8cm,CF=2cm,求CE的长. |
22.“中秋节”是我国的传统佳节,历来都有赏月,吃月饼的习俗.小明家吃过晚饭后,小明的母亲在桌子上放了四个包装纸盒完全一样的月饼,它们分别是2个豆沙,1个莲蓉和1个叉烧.
(1)小明随机拿一个月饼,是莲蓉的概率是多少?
(2)小明随机拿2个月饼,请用树形图或列表的方法表示所有可能的结果,并计算出没有拿到豆沙月饼的概率是多少?
(1)小明随机拿一个月饼,是莲蓉的概率是多少?
(2)小明随机拿2个月饼,请用树形图或列表的方法表示所有可能的结果,并计算出没有拿到豆沙月饼的概率是多少?
23.如图,在平面直角坐标系xOy中,直线y=k1x+b交x轴于点A(-3,0),交y轴于点B(0,2),并与的图象在第一象限交于点C,CD⊥x轴,垂足为D,OB是△ACD的中位线.
(1)求一次函数与反比例函数的解析式;
(2)若点C'是点C关于y轴的对称点,请求出△ABC'的面积.
(1)求一次函数与反比例函数的解析式;
(2)若点C'是点C关于y轴的对称点,请求出△ABC'的面积.
24.为响应区“美丽广西清洁乡村 ”的号召,某校开展“美丽广西清洁校园 ”的活动,该校经过精心设计,计算出需要绿化的面积为498m2,绿化150m2后,为了更快的完成该项绿化工作,将每天的工作量提高为原来的1.2倍.结果一共用20天完成了该项绿化工作.
(1)该项绿化工作原计划每天完成多少m2?,
(2)在绿化工作中有一块面积为170m2的矩形场地,矩形的长比宽的2倍少3 m,请问这块矩形场地的长和宽各是多少米?
(1)该项绿化工作原计划每天完成多少m2?,
(2)在绿化工作中有一块面积为170m2的矩形场地,矩形的长比宽的2倍少3 m,请问这块矩形场地的长和宽各是多少米?
25.如图,在△ABC中,以AB为直径的⊙O交AC于点D,直径AB左侧的半圆上有一点动点E(不与点A、B重合),连结EB、E
A. (1)如果∠CBD=∠E,求证:BC是⊙O的切线; (2)当点E运动到什么位置时,△EDB≌△ABD,并给予证明; (3)若tanE=,BC=,求阴影部分的面积.(计算结果精确到0.1) (参考数值:π≈3.14,≈1.41,≈1.73) |
26.如图,在平面直角坐标系xOy中,将抛物线C1:y=x2+3先向右平移1个单位,再向下平移7个单位得到抛物线C2。C2的图象与x轴交于A、B两点(点A在点B的左侧)。
(1)求抛物线C2的解析式;
(2)若抛物线C2的对称轴与x轴交于点C,与抛物线C2交于点D,与抛物线C1交于点E,连结AD、DB、BE、EA,请证明四边形ADBE是菱形,并计算它的面积;
(3)若点F为对称轴DE上任意一点,在抛物线C2上是否存在这样的点G,使以O、B、F、G四点为顶点的四边形是平行四边形,如果存在,请求出点G的坐标,如果不存在,请说明理由。
(1)求抛物线C2的解析式;
(2)若抛物线C2的对称轴与x轴交于点C,与抛物线C2交于点D,与抛物线C1交于点E,连结AD、DB、BE、EA,请证明四边形ADBE是菱形,并计算它的面积;
(3)若点F为对称轴DE上任意一点,在抛物线C2上是否存在这样的点G,使以O、B、F、G四点为顶点的四边形是平行四边形,如果存在,请求出点G的坐标,如果不存在,请说明理由。