全一卷
1.在有理数2,0,﹣1,中,最小的是( )
A.2 | B.0 | C.﹣1 | D. |
2.2019年6月9日中央电视台新闻报道,端午节期间天猫网共计销售粽子123000000个,将数据123000000用科学记数法表示为( )
A.12.3×10 | B.1.23×10 | C.1.23×10 | D.0.123×10 |
3.如图,这是由7个相同的小正方体搭成的几何体,则这个几何体的左视图是( )
A. | B. | C. | D. |
4.下列运算正确的是( )
A.(﹣a)=﹣a | B.3a•2a=6a |
C.﹣a(﹣a+1)=﹣a+a | D.a+a=a |
5.如图,某人从点A出发,前进8m后向右转60°,再前进8m后又向右转60°,按照这样的方式一直走下去,当他第一次回到出发点A时,共走了( )
A.24m | B.32m | C.40m | D.48m |
6.如图,AB∥CD,EF与AB,CD分别交于点G,H,∠CHG的平分线HM交AB于点M,若∠EGB=50°,则∠GMH的度数为( )
A.50° | B.55° | C.60° | D.65° |
7.如图,若一次函数y=﹣2x+b的图象与两坐标轴分别交于A,B两点,点A的坐标为(0,3),则不等式﹣2x+b>0的解集为( )
A.x> | B.x< | C.x>3 | D.x<3 |
8.如图,正方形ABCD和正方形CGFE的顶点C,D,E在同一条直线上,顶点B,C,G在同一条直线上.O是EG的中点,∠EGC的平分线GH过点D,交BE于点H,连接FH交EG于点M,连接OH.以下四个结论:①GH⊥BE;②△EHM∽△GHF;③﹣1;④=2﹣,其中正确的结论是( )
A.①②③ | B.①②④ | C.①③④ | D.②③④ |
9.在函数中, 自变量的取值范围是___________ .
10.一个不透明的口袋中有红球和黑球共25个,这些球除颜色外都相同.进行大量的摸球试验(每次摸出1个球)后,发现摸到黑球的频率在0.6附近摆动,据此可以估计黑球为___个.
11.关于x的方程x2+3x+k﹣1=0有两个相等的实数根,则k的值为___ .
12.如图,在菱形ABCD中,E,F分别是AD,DC的中点,若BD=4,EF=3,则菱形ABCD的周长为__ .
13.如图,AC是⊙O的直径,B,D是⊙O上的点,若⊙O的半径为3,∠ADB=30°,则的长为____.
14.为了美化校园环境,某中学今年春季购买了A,B两种树苗在校园四周栽种,已知A种树苗的单价比B种树苗的单价多10元,用600元购买A种树苗的棵数恰好与用450元购买B种树苗的棵数相同.若设A种树苗的单价为x元,则可列出关于x的方程为___.
15.如图,正方形A0B0C0A1的边长为1,正方形A1B1C1A2的边长为2,正方形A2B2C2A3的边长为4,正方形A3B3C3A4的边长为8……依此规律继续作正方形AnBn∁nAn+1,且点A0,A1,A2,A3,…,An+1在同一条直线上,连接A0C1交A1B1于点D1,连接A1C2交A2B2于点D2,连接A2C3交A3B3于点D3……记四边形A0B0C0D1的面积为S1,四边形A1B1C1D2的面积为S2,四边形A2B2C2D3的面积为S3……四边形An﹣1Bn﹣1Cn﹣1Dn的面积为Sn,则S2019=_____.
16.如图,在矩形ABCD中,AB=5,BC=6,点M,N分别在AD,BC上,且AM=AD,BN=BC,E为直线BC上一动点,连接DE,将△DCE沿DE所在直线翻折得到△DC′E,当点C′恰好落在直线MN上时,CE的长为___ .
17.先化简,再求值:(﹣)÷,其中x=3+.
18.如图,△ABC的三个顶点的坐标分别是A(2,4),B(1,1),C(3,2).
(1)作出△ABC向左平移4个单位长度后得到的△A1B1C1,并写出点C1的坐标.
(2)已知△A2B2C2与△ABC关于直线l对称,若点C2的坐标为(﹣2,﹣3),请直接写出直线l的函数解析式.注:点A1,B1,C1及点A2,B2,C2分别是点A,B,C按题中要求变换后对应得到的点.
(1)作出△ABC向左平移4个单位长度后得到的△A1B1C1,并写出点C1的坐标.
(2)已知△A2B2C2与△ABC关于直线l对称,若点C2的坐标为(﹣2,﹣3),请直接写出直线l的函数解析式.注:点A1,B1,C1及点A2,B2,C2分别是点A,B,C按题中要求变换后对应得到的点.
19.随着我国经济社会的发展,人民对于美好生活的追求越来越高.某社区为了了解家庭对于文化教育的消费情况,随机抽取部分家庭,对每户家庭的文化教育年消费金额进行问卷调查,根据调查结果绘制成如下两幅不完整的统计图表.
请你根据统计图表提供的信息,解答下列问题:
(1)本次被调查的家庭有 户,表中m= ;
(2)请说明本次调查数据的中位数落在哪一组?
(3)在扇形统计图中,D组所在扇形的圆心角为多少度?
(4)这个社区有2500户家庭,请你估计年文化教育消费在10000元以上的家庭有多少户?
组别 | 家庭年文化教育消费金额x(元) | 户数 |
A | x≤5000 | 36 |
B | 5000<x≤10000 | 27 |
C | 10000<x≤15000 | m |
D | 15000<x≤20000 | 33 |
E | x>20000 | 30 |
(1)本次被调查的家庭有 户,表中m= ;
(2)请说明本次调查数据的中位数落在哪一组?
(3)在扇形统计图中,D组所在扇形的圆心角为多少度?
(4)这个社区有2500户家庭,请你估计年文化教育消费在10000元以上的家庭有多少户?
20.妈妈给小红和弟弟买了一本刘慈欣的小说《流浪地球》,姐弟俩都想先睹为快.是小红对弟弟说:我们利用下面中心涂黑的九宫格图案(如图所示)玩一个游戏,规则如下:我从第一行,你从第三行,同时各自任意选取一个方格,涂黑,如果得到的新图案是轴对称图形.我就先读,否则你先读.小红设计的游戏对弟弟是否公平?请用画树状图或列表的方法说明理由.(第一行的小方格从左至右分别用A,B,C表示,第三行的小方格从左至右分别用D,E,F表示)
21.如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与y轴交于点C,与反比例函数y=(k≠0)的图象交于A,B两点,点A在第一象限,纵坐标为4,点B在第三象限,BM⊥x轴,垂足为点M,BM=OM=2.
(1)求反比例函数和一次函数的解析式.
(2)连接OB,MC,求四边形MBOC的面积.
(1)求反比例函数和一次函数的解析式.
(2)连接OB,MC,求四边形MBOC的面积.
22.如图为某海域示意图,其中灯塔D的正东方向有一岛屿C.一艘快艇以每小时20nmile的速度向正东方向航行,到达A处时得灯塔D在东北方向上,继续航行0.3h,到达B处时测得灯塔D在北偏东30°方向上,同时测得岛屿C恰好在B处的东北方向上,此时快艇与岛屿C的距离是多少?(结果精确到1nmile.参考数据:≈1.41,≈1.73,≈2.45)
23.如图,在Rt△ABC中,∠ACB=90°,D是AC上一点,过B,C,D三点的⊙O交AB于点E,连接ED,EC,点F是线段AE上的一点,连接FD,其中∠FDE=∠DCE.
(1)求证:DF是⊙O的切线.
(2)若D是AC的中点,∠A=30°,BC=4,求DF的长.
(1)求证:DF是⊙O的切线.
(2)若D是AC的中点,∠A=30°,BC=4,求DF的长.
24.某商场销售一种商品的进价为每件30元,销售过程中发现月销售量y(件)与销售单价x(元)之间的关系如图所示.
(1)根据图象直接写出y与x之间的函数关系式.
(2)设这种商品月利润为W(元),求W与x之间的函数关系式.
(3)这种商品的销售单价定为多少元时,月利润最大?最大月利润是多少?
(1)根据图象直接写出y与x之间的函数关系式.
(2)设这种商品月利润为W(元),求W与x之间的函数关系式.
(3)这种商品的销售单价定为多少元时,月利润最大?最大月利润是多少?
25.在Rt△ABC中,∠ACB=90°,D是△ABC内一点,连接AD,BD.在BD左侧作Rt△BDE,使∠BDE=90°,以AD和DE为邻边作▱ADEF,连接CD,DF.
(1)若AC=BC,BD=DE.
①如图1,当B,D,F三点共线时,CD与DF之间的数量关系为 .
②如图2,当B,D,F三点不共线时,①中的结论是否仍然成立?请说明理由.
(2)若BC=2AC,BD=2DE,,且E,C,F三点共线,求的值.
(1)若AC=BC,BD=DE.
①如图1,当B,D,F三点共线时,CD与DF之间的数量关系为 .
②如图2,当B,D,F三点不共线时,①中的结论是否仍然成立?请说明理由.
(2)若BC=2AC,BD=2DE,,且E,C,F三点共线,求的值.
26.在平面直角坐标系中,过点A(3,4)的抛物线y=ax2+bx+4与x轴交于点B(﹣1,0),与y轴交于点C,过点A作AD⊥x轴于点D.
(1)求抛物线的解析式.
(2)如图1,点P是直线AB上方抛物线上的一个动点,连接PD交AB于点Q,连接AP,当S△AQD=2S△APQ时,求点P的坐标.
(3)如图2,G是线段OC上一个动点,连接DG,过点G作GM⊥DG交AC于点M,过点M作射线MN,使∠NMG=60°,交射线GD于点N;过点G作GH⊥MN,垂足为点H,连接BH.请直接写出线段BH的最小值.
(1)求抛物线的解析式.
(2)如图1,点P是直线AB上方抛物线上的一个动点,连接PD交AB于点Q,连接AP,当S△AQD=2S△APQ时,求点P的坐标.
(3)如图2,G是线段OC上一个动点,连接DG,过点G作GM⊥DG交AC于点M,过点M作射线MN,使∠NMG=60°,交射线GD于点N;过点G作GH⊥MN,垂足为点H,连接BH.请直接写出线段BH的最小值.