全一卷
1.的相反数是( )
A. | B.2 | C. | D. |
2.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示应为
A. | B. | C. | D. |
3.如图,有6张扑克牌,从中随机抽取一张,点数为偶数的概率是( )
A. | B. | C. | D. |
4.如图是几何体的三视图,该几何体是
A.圆锥 | B.圆柱 | C.正三棱柱 | D.正三棱锥 |
5.某篮球队12名队员的年龄如下表所示:
则这12名队员年龄的众数和平均数分别是
年龄(岁) | 18 | 19 | 20 | 21 |
人数 | 5 | 4 | 1 | 2 |
则这12名队员年龄的众数和平均数分别是
A.18,19 | B.19,19 | C.18, | D.19, |
6.园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积(单位:平方米)与工作时间(单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为
A.40平方米 | B.50平方米 | C.80平方米 | D.100平方米 |
7.如图⊙O的直径垂直于弦,垂足是,,,的长为( )
A. | B.4 | C. | D.8 |
8.已知点为某封闭图形边界上一定点,动点从点出发,沿其边界顺时针匀速运动一周.设点运动的时间为,线段的长为.表示与的函数关系的图象大致如右图所示,则该封闭图形可能是( )
A. | B. | C. | D. |
9.分解因式: ________ .
10.在某一时刻,测得一根高为m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为______________ m.
11.如图,在平面直角坐标系中,正方形的边长为2.写出一个函数,使它的图象与正方形有公共点,这个函数的表达式为____________ .
12.在平面直角坐标系中,对于点,我们把点叫做点的伴随点,已知点的伴随点为,点的伴随点为,点的伴随点为,…,这样依次得到点,,,…,,….若点的坐标为(3,1),则点的坐标为 ,点的坐标为 ;若点的坐标为(,),对于任意的正整数,点均在轴上方,则,应满足的条件为 .
13.计算:.
14.解不等式,并把它的解集在数轴上表示出来.
15.已知,求代数式的值.
16.已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).
(1)求证:方程总有两个实数根;
(2)若方程的两个实数根都是整数,求正整数m的值.
(1)求证:方程总有两个实数根;
(2)若方程的两个实数根都是整数,求正整数m的值.
17.列方程或方程组解应用题:
小马自驾私家车从地到地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多元,求新购买的纯电动汽车每行驶1千米所需的电费.
小马自驾私家车从地到地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多元,求新购买的纯电动汽车每行驶1千米所需的电费.
18.如图,在平行四边形ABCD中,平分,交于点,平分,交于点,与交于点,连接,.
(1)求证:四边形是菱形;
(2)若,,,求的值.
(1)求证:四边形是菱形;
(2)若,,,求的值.
19.根据某研究院公布的2009~2013年我国成年国民阅读调查报告的部分相关数据,绘制的统计图表如下:
根据以上信息解答下列问题:
(1)直接写出扇形统计图中的值;
(2)从2009到2013年,成年国民年人均阅读图书的数量每年增长的幅度近似相等,估算2014年成年国民年人均阅读图书的数量约为 本;
(3)2013年某小区倾向图书阅读的成年国民有990人,若该小区2014年与2013年成年国民的人数基本持平,估算2014年该小区成年国民阅读图书的总数量约为 本.
年份 | 年人均阅读图书数量(本) |
2009 | |
2010 | |
2011 | |
2012 | |
2013 |
根据以上信息解答下列问题:
(1)直接写出扇形统计图中的值;
(2)从2009到2013年,成年国民年人均阅读图书的数量每年增长的幅度近似相等,估算2014年成年国民年人均阅读图书的数量约为 本;
(3)2013年某小区倾向图书阅读的成年国民有990人,若该小区2014年与2013年成年国民的人数基本持平,估算2014年该小区成年国民阅读图书的总数量约为 本.
20.如图,是的直径,是的中点,的切线交的延长线于点,是的中点,的延长线交切线于点,交于点,连接.
(1)求证:;
(2)若,求的长.
(1)求证:;
(2)若,求的长.
21.阅读下面材料:
小腾遇到这样一个问题:如图1,在中,点在线段上,,,,,求的长.
小腾发现,过点作,交的延长线于点,通过构造,经过推理和计算能够使问题得到解决(如图2).
请回答:的度数为 ,的长为 .
参考小腾思考问题的方法,解决问题:
如图3,在四边形中,,,,与交于点,,,求的长.
小腾遇到这样一个问题:如图1,在中,点在线段上,,,,,求的长.
小腾发现,过点作,交的延长线于点,通过构造,经过推理和计算能够使问题得到解决(如图2).
请回答:的度数为 ,的长为 .
参考小腾思考问题的方法,解决问题:
如图3,在四边形中,,,,与交于点,,,求的长.
22.在平面直角坐标系中,抛物线经过点(0,),(3,4).
(1)求抛物线的表达式及对称轴;
(2)设点关于原点的对称点为,点是抛物线对称轴上一动点,记抛物线在,之间的部分为图象(包含,两点).若直线与图象有公共点,结合函数图像,求点纵坐标的取值范围.
(1)求抛物线的表达式及对称轴;
(2)设点关于原点的对称点为,点是抛物线对称轴上一动点,记抛物线在,之间的部分为图象(包含,两点).若直线与图象有公共点,结合函数图像,求点纵坐标的取值范围.
23.在正方形外侧作直线,点关于直线的对称点为,连接,,其中交直线于点.
()依题意补全图.
()若,求的度数.
()如图,若,用等式表示线段,,之间的数量关系,并证明.
()依题意补全图.
()若,求的度数.
()如图,若,用等式表示线段,,之间的数量关系,并证明.
24.对某一个函数给出如下定义:若存在实数,对于任意的函数值,都满足,则称这个函数是有界函数,在所有满足条件的中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.
(1)分别判断函数和是不是有界函数?若是有界函数,求其边界值;
(2)若函数的边界值是2,且这个函数的最大值也是2,求的取值范围;
(3)将函数的图象向下平移个单位,得到的函数的边界值是,当在什么范围时,满足?
(1)分别判断函数和是不是有界函数?若是有界函数,求其边界值;
(2)若函数的边界值是2,且这个函数的最大值也是2,求的取值范围;
(3)将函数的图象向下平移个单位,得到的函数的边界值是,当在什么范围时,满足?