全一卷
1.-5的倒数是
A. | B.5 | C.- | D.-5 |
2.乐山大佛景区2013年5月份某周的最高气温(单位:℃)分别为:29,31,23,26,29,29.这组数据的极差为( )
A.29 | B.28 | C.8 | D.6 |
3.如图,已知直线a∥b,∠1=1310,则∠2等于()
A.390 | B.410 | C.490 | D.590 |
4.若,则下列不等式变形错误的是【 】
A. | B. | C. | D. |
5.如图,点E是的边CD的中点,AD、BE的延长线相交于点F,DF=3,DE=2,则的周长为( )
A.5 | B.7 | C.10 | D.14 |
6.如图,在平面直角坐标系中,P是第一象限内的点,其坐标是(3,m),且OP与x轴正半轴的夹角α的正切值是,则sinα的值是( )
A. | B. | C. | D. |
7.甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C两地间的距离为110千米,B,C两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时.由题意列出方程.其中正确的是( )
A. | B. | C. | D. |
8.一个立体图形的三视图如图所示,根据图中数据求得这个立体图形的的表面积为( )
A. | B. | C. | D. |
9.如图,圆心在y轴的负半轴上,半径为5的⊙B与y轴的正半轴交于点A(0,1)。过点P(0,-7)的直线l与⊙B相交于C、D两点,则弦CD长的所有可能的整数值有( )条.
A.1 B.2 C.3 D.4
A.1 B.2 C.3 D.4
10.如图,已知第一象限内的点A在反比例函数y=的图象上,第二象限内的点B在反比例函数y=的图象上,且OA⊥OB,cosA=,则k的值为()
A.﹣3 | B.﹣4 | C.﹣ | D.﹣2 |
11.如果规定向东为正,那么向西即为负.汽车向东行驶3千米记作千米,向西行驶2千米应记作____ .
12.在一个布口袋里装有白、红、黑三种颜色的小球.它们除颜色外没有任何其他区别,其中白球5只、红球3只、黑球1只.袋中的球已经搅匀,闭上眼睛随机地从装中取出1只球,取出红球的概率是____ .
13.把多项式分解因式: .
14.如图,在四边形ABCD中,∠A=450,直线l与边AB、AD分别相交于点M、N.则∠1 +∠2 = .
15.如图,小方格都是边长为1 的正方形.则以格点为圆心,半径为1和2的两种弧围成的“叶状”阴影图案的面积为____ .
16.对非负实数x“四舍五入”到个位的值记为<x>,即当n为非负整数时,若,则<x>=n,如<0.46>=0,<3.67>=4。给出下列关于<x>的结论:
①<1.493>=1;
②<2x>=2<x>;
③若,则实数x的取值范围是;
④当x≥0,m为非负整数时,有;
⑤。
其中,正确的结论有 (填写所有正确的序号)。
①<1.493>=1;
②<2x>=2<x>;
③若,则实数x的取值范围是;
④当x≥0,m为非负整数时,有;
⑤。
其中,正确的结论有 (填写所有正确的序号)。
17.化简:.
18.如图,已知线段AB.
(1)用尺规作图的方法作出线段AB的垂直平分线l(保留作图痕迹,不要求写出作法);
(2)在(1)中所作的直线l上任意取两点M、N(线段AB的上方),连接AM、AN.BM、BN.
求证:∠MAN=∠MBN.
(1)用尺规作图的方法作出线段AB的垂直平分线l(保留作图痕迹,不要求写出作法);
(2)在(1)中所作的直线l上任意取两点M、N(线段AB的上方),连接AM、AN.BM、BN.
求证:∠MAN=∠MBN.
19.化简并求值:,其中x、y满足
20.中学生带手机上学的现象越来越受到社会的关注,为此,某记者随机调查了某城区若干名学生家长对这种现象的态度(态度分为:A:无所谓;B:基本赞成;C:赞成;D:反对),并将调查结果绘制成频数折线图1和统计图2(不完整).请根据图中提供的信息,解答下列问题:
(1)此次抽样检查中,共调查了 名学生家长;
(2)将图1补充完整;
(3)根据抽样检查的结果,请你估计该市城区6000名中学生家长中有多少名家长持反对态度?
(1)此次抽样检查中,共调查了 名学生家长;
(2)将图1补充完整;
(3)根据抽样检查的结果,请你估计该市城区6000名中学生家长中有多少名家长持反对态度?
21.如图,山顶有一铁塔AB的高度为20米,为测量山的高度BC,在山脚点D处测得塔顶A和塔基B的仰角分别为60°和45°.求山的高度B
A.(结果保留根号) |
22.如图,AB是⊙O的直径,经过圆上点D的直线CD恰∠ADC=∠B。
(1)求证:直线CD是⊙O的的切线;
(2)过点A作直线AB的垂线交BD的延长线于点E,且AB=,BD=2,求线段AE的长。
(1)求证:直线CD是⊙O的的切线;
(2)过点A作直线AB的垂线交BD的延长线于点E,且AB=,BD=2,求线段AE的长。
23.已知关于x、y的方程组的解满足不等式组.求满足条件的m的整数值.
24.已知关于x的一元二次方程
(1)求证:方程有两个不相等的实数根;
(2)若△ABC的两边AB、AC的长是方程的两个实数根,第三边BC的长为5.当△ABC是等腰三角形时,求k的值
(1)求证:方程有两个不相等的实数根;
(2)若△ABC的两边AB、AC的长是方程的两个实数根,第三边BC的长为5.当△ABC是等腰三角形时,求k的值
25.如图,已知直线与反比例函数的图象交于A、B两点,与x 轴、y轴分别相交于C、D两点.
(1)如果点A的横坐标为1,利用函数图象求关于x的不等式的解集;
(2)是否存在以AB为直径的圆经过点P(1,0)?若存在,求出m的值;若不存在,请说明理由.
(1)如果点A的横坐标为1,利用函数图象求关于x的不等式的解集;
(2)是否存在以AB为直径的圆经过点P(1,0)?若存在,求出m的值;若不存在,请说明理由.
26.阅读下列材料:
如图1,在梯形ABCD中,AD∥BC,点M、N分别在边AB、BC上,且MN∥AD,记AD=a,BC=b,若,则有结论:.
请根据以上结论,解答下列问题:
如图2,3,BE、CF是△ABC的两条角平分线,过EF上一点P分别作△ABC三边的垂线段PP1、PP2、PP3,交BC于点P1,交AB于点P2,交AC于点P3.
(1)若点P为线段EF的中点,求证:PP1=PP2+PP3;
(2)若点P在线段EF上任意位置时,试探究PP1、PP2、PP3的数量关系,给出证明.
如图1,在梯形ABCD中,AD∥BC,点M、N分别在边AB、BC上,且MN∥AD,记AD=a,BC=b,若,则有结论:.
请根据以上结论,解答下列问题:
如图2,3,BE、CF是△ABC的两条角平分线,过EF上一点P分别作△ABC三边的垂线段PP1、PP2、PP3,交BC于点P1,交AB于点P2,交AC于点P3.
(1)若点P为线段EF的中点,求证:PP1=PP2+PP3;
(2)若点P在线段EF上任意位置时,试探究PP1、PP2、PP3的数量关系,给出证明.
27.如图1,已知抛物线C经过原点,对称轴与抛物线相交于第三象限的点M,与x轴相交于点N,且.
(1)求抛物线C的解析式;
(2)将抛物线C绕原点O旋转1800得到抛物线,抛物线与x轴的另一交点为A,B为抛物线上横坐标为2的点.
①若P为线段AB上一动点,PD⊥y轴于点D,求△APD面积的最大值;
②过线段OA上的两点E、F分别作x轴的垂线,交折线O-B-A于E1、F1,再分别以线段EE1、FF1为边作如图2所示的等边△AE1E2、等边△AF1F2,点E以每秒1个长度单位的速度从点O向点A运动,点F以每秒1个长度单位的速度从点A向点O运动,当△AE1E2有一边与△AF1F2的某一边在同一直线上时,求时间t的值.
(1)求抛物线C的解析式;
(2)将抛物线C绕原点O旋转1800得到抛物线,抛物线与x轴的另一交点为A,B为抛物线上横坐标为2的点.
①若P为线段AB上一动点,PD⊥y轴于点D,求△APD面积的最大值;
②过线段OA上的两点E、F分别作x轴的垂线,交折线O-B-A于E1、F1,再分别以线段EE1、FF1为边作如图2所示的等边△AE1E2、等边△AF1F2,点E以每秒1个长度单位的速度从点O向点A运动,点F以每秒1个长度单位的速度从点A向点O运动,当△AE1E2有一边与△AF1F2的某一边在同一直线上时,求时间t的值.