全一卷
1.﹣3的绝对值是( )
A.﹣3 | B.3 | C.- | D. |
2.如图,,,,则的大小是( )
A.25° | B.35° | C.50° | D.65° |
3.下列计算,正确的是( )
A. | B. | C. | D. |
4.一个几何体的三视图如图所示,则这个几何体是( )
A.球体 | B.圆锥 | C.棱柱 | D.圆柱 |
5.下列事件是必然事件的是( )
A.明天太阳从西边升起 | B.掷出一枚硬币,正面朝上 |
C.打开电视机,正在播放“新闻联播” | D.任意画一个三角形,它的内角和等于180° |
6.不等式组的解集为( )
A.-1<x<2 | B.1<x≤2 | C.-1<x≤2 | D.-1<x≤3 |
7.下列方程有两个相等的实数根的是( )
A. | B. |
C. | D. |
8.将抛物线向右平移2个单位,再向上平移3个单位后,抛物线的解析式为( )
A. | B. | C. | D. |
9.如图,在⊙O中,直径AB⊥CD,垂足为E,∠BOD=48°,则∠BAC的大小是( )
A.60° | B.48° | C.30° | D.24° |
10.如图,用一张半径为24cm的扇形纸板制作一顶圆锥形帽子(接缝忽略不计),如果圆锥形帽子的底面半径为10cm,那么这张扇形纸板的面积是( )
A.240πcm2 | B.480πcm2 | C.1200πcm2 | D.2400πcm2 |
11.反比例函数()的图象与一次函数的图象交于A,B两点,其中A(1,2),当时,x的取值范围是( )
A.x<1 | B.1<x<2 | C.x>2 | D.x<1或x>2 |
12.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+4与x轴、y轴分别交于A、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P在线段OA上运动时,使得⊙P成为整圆的点P个数是( )
A.6 | B.8 | C.10 | D.12 |
13.计算:_________ .
14.如图,在△ABC中,D,E分别是AB,AC的中点,若BC=10,则DE=____ .
15.方程的解是_________ .
16.某学校计划开设A,B,C,D四门校本课程供学生选修,规定每个学生必须并且只能选修其中一门,为了了解学生的选修意向,现随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的条形统计图,已知该校学生人数为2000人,由此估计选修A课程的学生有 人.
17.如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是_________________ .
18.如图,菱形ABCD的边长为1,直线l过点C,交AB的延长线于M,交AD的延长线于N,则=____ .
19.(6分)计算:.
20.先化简,再求值:,其中.
21.如图,在△ABC中,∠ACB=90°,AC=BC=AD
(1)作∠A的平分线交CD于E;
(2)过B作CD的垂线,垂足为F;
(3)请写出图中两对全等三角形(不添加任何字母),并选择其中一对加以证明.
(1)作∠A的平分线交CD于E;
(2)过B作CD的垂线,垂足为F;
(3)请写出图中两对全等三角形(不添加任何字母),并选择其中一对加以证明.
22.联华商场以150元/台的价格购进某款电风扇若干台,很快售完.商场用相同的货款再次购进这款风扇,因价格提高30元,进货量减少了10台.
(1)这两次各购进电风扇多少台?
(2)商场以250元/台的售价卖完这两批电风扇,商场获利多少元?
(1)这两次各购进电风扇多少台?
(2)商场以250元/台的售价卖完这两批电风扇,商场获利多少元?
23.某校为了选拔学生参加“汉字听写大赛”,对九年级一班、二班各10名学生进行汉字听写测试.计分采用10分制(得分均取整数),成绩达到6分或6分以上为及格,得到9分为优秀,成绩如表1所示,并制作了成绩分析表(表2).
表1
表2
(1)在表2中,a= ,b= ;
(2)有人说二班的及格率、优秀率均高于一班,所以二班比一班好;但也有人认为一班成绩比二班好,请你给出坚持一班成绩好的两条理由;
(3)一班、二班获满分的中同学性别分别是1男1女、2男1女,现从这两班获满分的同学中各抽1名同学参加“汉字听写大赛”,用树状图或列表法求出恰好抽到1男1女两位同学的概率.
表1
表2
(1)在表2中,a= ,b= ;
(2)有人说二班的及格率、优秀率均高于一班,所以二班比一班好;但也有人认为一班成绩比二班好,请你给出坚持一班成绩好的两条理由;
(3)一班、二班获满分的中同学性别分别是1男1女、2男1女,现从这两班获满分的同学中各抽1名同学参加“汉字听写大赛”,用树状图或列表法求出恰好抽到1男1女两位同学的概率.
24.丽君花卉基地出售两种盆栽花卉:太阳花6元/盆,绣球花10元/盆.若一次购买的绣球花超过20盆时,超过20盆部分的绣球花价格打8折.
(1)分别写出两种花卉的付款金额y(元)关于购买量x(盆)的函数解析式;
(2)为了美化环境,花园小区计划到该基地购买这两种花卉共90盆,其中太阳花数量不超过绣球花数量的一半.两种花卉各买多少盆时,总费用最少,最少总费用是多少元?
(1)分别写出两种花卉的付款金额y(元)关于购买量x(盆)的函数解析式;
(2)为了美化环境,花园小区计划到该基地购买这两种花卉共90盆,其中太阳花数量不超过绣球花数量的一半.两种花卉各买多少盆时,总费用最少,最少总费用是多少元?
25.如图,AB为⊙O的直径,CO⊥AB于O,D在⊙O上,连接BD,CD,延长CD与AB的延长线交于E,F在BE上,且FD=F
A. (1)求证:FD是⊙O的切线; (2)若AF=8,tan∠BDF=,求EF的长. |
26.如图1,抛物线y=﹣x2+2x+3与x轴交于A,B,与y轴交于C,抛物线的顶点为D,直线l过C交x轴于E(4,0).
(1)写出D的坐标和直线l的解析式;
(2)P(x,y)是线段BD上的动点(不与B,D重合),PF⊥x轴于F,设四边形OFPC的面积为S,求S与x之间的函数关系式,并求S的最大值;
(3)点Q在x轴的正半轴上运动,过Q作y轴的平行线,交直线l于M,交抛物线于N,连接CN,将△CMN沿CN翻转,M的对应点为M′.在图2中探究:是否存在点Q,使得M′恰好落在y轴上?若存在,请求出Q的坐标;若不存在,请说明理由.
(1)写出D的坐标和直线l的解析式;
(2)P(x,y)是线段BD上的动点(不与B,D重合),PF⊥x轴于F,设四边形OFPC的面积为S,求S与x之间的函数关系式,并求S的最大值;
(3)点Q在x轴的正半轴上运动,过Q作y轴的平行线,交直线l于M,交抛物线于N,连接CN,将△CMN沿CN翻转,M的对应点为M′.在图2中探究:是否存在点Q,使得M′恰好落在y轴上?若存在,请求出Q的坐标;若不存在,请说明理由.