全一卷
1.统计显示,2013年底杭州市各类高中在校学生人数约是11.4万人,将11.4万用科学记数法表示应为()
A.11.4×104 | B.1.14×104 |
C.1.14×105 | D.0.114×106 |
2.下列计算正确的是()
A.23+24=27 | B.23−24= |
C.23×24=27 | D.23÷24=21 |
3.下列图形是中心对称图形的是【 】
A. | B. | C. | D. |
4.下列各式的变形中,正确的是( )
A.(-x-y)(-x+y)=x2-y2 | B.-x= |
C.x2-4x+3=(x-2)2+1 | D.x÷(x2+x)=+1 |
5.圆内接四边形ABCD中,已知∠A=70°,则∠C=( )
A.20° | B.30° | C.70° | D.110° |
6.若k<<k+1(k是整数),则k=( )
A.6 | B.7 | C.8 | D.9 |
7.某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%,设把x公顷旱地改为林地,则可列方程( )
A.54−x=20%×108 | B.54−x=20%×(108+x) | C.54+x=20%×162 | D.108−x=20%(54+x) |
8.如图是某地2月18日到23日PM2.5浓度和空气质量指数AQI的统计图(当AQI不大于100时称空气质量为“优良”),由图可得下列说法:
①18日的PM2.5浓度最低;
②这六天中PM2.5浓度的中位数是112µg/cm2;
③这六天中有4天空气质量为“优良”;
④空气质量指数AQI与PM2.5浓度有关,
其中正确的说法是( )
①18日的PM2.5浓度最低;
②这六天中PM2.5浓度的中位数是112µg/cm2;
③这六天中有4天空气质量为“优良”;
④空气质量指数AQI与PM2.5浓度有关,
其中正确的说法是( )
A.①②③ | B.①②④ | C.①③④ | D.②③④ |
9.如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为( )
A. | B. | C. | D. |
10.设二次函数的图象与一次函数的图象交于点,若函数的图象与轴仅有一个交点,则( )
A. | B. | C. | D. |
11.数据1,2,3,5,5的众数是__________________,平均数是______________
12.分解因式:m3n−4mn=____________________________
13.函数y=x2+2x+1,当y=0时,x=_______________ ;当1<x<2时,y随x的增大而_____________ (填写“增大”或“减小”)
14.如图,点 A,C,F,B 在同一直线上,CD 平分∠ECB,FG//CD.若∠ECA 为 α 度,则∠GFB为________ 度(用关于 α 的代数式表示).
15.在平面直角坐标系中,O为坐标原点,设点P(1,t)在反比例函数y=的图象上,过点P作直线l与x轴平行,点Q在直线l上,满足QP=OP,若反比例函数y=的图象经过点Q,则k=_____
16.如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD=_________ .
17.杭州市推行垃圾分类已经多年,但在厨余垃圾中除了厨余类垃圾还混杂着非厨余类垃圾,如图是杭州市某一天收到的厨余垃圾的统计图
(1)试求出m的值
(2)杭州市那天共收到厨余垃圾约200吨,请计算其中混杂着的玻璃类垃圾的吨数
(1)试求出m的值
(2)杭州市那天共收到厨余垃圾约200吨,请计算其中混杂着的玻璃类垃圾的吨数
18. 如图,在△ABC中,已知AB=AC,AD平分∠BAC,点M、N分别在AB、AC边上,AM=2MB,AN=2NC,求证:DM=DN
19.如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”.
如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.
如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.
20.设函数y=(x−1)[(k−1)x+(k−3)](k是常数)
(1)当k取1和2时的函数y1和y2的图象如图所示,请你在同一直角坐标系中画出当k取0时函数的图象
(2)根据图象,写出你发现的一条结论
(3)将函数y2的图象向左平移4个单位,再向下平移2个单位,得到函数y3的图象,求函数y3的最小值:
(1)当k取1和2时的函数y1和y2的图象如图所示,请你在同一直角坐标系中画出当k取0时函数的图象
(2)根据图象,写出你发现的一条结论
(3)将函数y2的图象向左平移4个单位,再向下平移2个单位,得到函数y3的图象,求函数y3的最小值:
21.“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.
(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.
(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).
(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.
(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).
22.(12分)如图,在△ABC中(BC>AC),∠ACB=90°,点D在AB边上,DE⊥AC于点E
(1)若,AE=2,求EC的长
(2)设点F在线段EC上,点G在射线CB上,以F,C,G为顶点的三角形与△EDC有一个锐角相等,FG交CD于点P,问:线段CP可能是△CFG的高线还是中线?或两者都有可能?请说明理由
(1)若,AE=2,求EC的长
(2)设点F在线段EC上,点G在射线CB上,以F,C,G为顶点的三角形与△EDC有一个锐角相等,FG交CD于点P,问:线段CP可能是△CFG的高线还是中线?或两者都有可能?请说明理由
23.方成同学看到一则材料:甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地.设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t的函数关系如图1所示.
方成思考后发现了如图1的部分正确信息:乙先出发1h;甲出发0.5小时与乙相遇.
请你帮助方成同学解决以下问题:
(1)分别求出线段BC,CD所在直线的函数表达式;
(2)当20<y<30时,求t的取值范围;
(3)分别求出甲,乙行驶的路程S甲,S乙与时间t的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象;
(4)丙骑摩托车与乙同时出发,从N地沿同一公路匀速前往M地,若丙经过h与乙相遇,问丙出发后多少时间与甲相遇?
方成思考后发现了如图1的部分正确信息:乙先出发1h;甲出发0.5小时与乙相遇.
请你帮助方成同学解决以下问题:
(1)分别求出线段BC,CD所在直线的函数表达式;
(2)当20<y<30时,求t的取值范围;
(3)分别求出甲,乙行驶的路程S甲,S乙与时间t的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象;
(4)丙骑摩托车与乙同时出发,从N地沿同一公路匀速前往M地,若丙经过h与乙相遇,问丙出发后多少时间与甲相遇?