全一卷
1.(﹣2)3=( )
A.﹣6 | B.6 | C.﹣8 | D.8 |
2.下列四个实数中最小的是()
A. | B.2 | C. | D.1.4 |
3.与是同类二次根式的是()
A. | B. | C. | D. |
4.下列命题是假命题的是()
A.若|a|=|b|,则a=b |
B.两直线平行,同位角相等 |
C.对顶角相等 |
D.若b2﹣4ac>0,则方程ax2+bx+c=0(a≠0)有两个不等的实数根 |
5.如图,正三棱柱的主视图为( ).
A. | B. | C. | D. |
6.在2016年泉州市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错误 的是( )
A.平均数为160 | B.中位数为158 | C.众数为158 | D.方差为20.3 |
7.反比例函数y=﹣的图象上有P1(x1,﹣2),P2(x2,﹣3)两点,则x1与x2的大小关系是( )
A.x1>x2 | B.x1=x2 | C.x1<x2 | D.不确定 |
8. 如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为( )
A.1 | B.2 | C.3 | D.4 |
9.在一个密闭不透明的袋子里有若干个白球.为估计白球个数,小何向其中投入8个黑球,搅拌均匀后随机摸出一个球,记下颜色,再把它放入袋中,不断重复摸球400次,其中88次摸到黑球,则估计袋中大约有白球( )
A.18个 | B.28个 | C.36个 | D.42个 |
10.已知抛物线y=ax2+bx+c的图象如图所示,则|a﹣b+c|+|2a+b|=()
A.a+b | B.a﹣2b | C.a﹣b | D.3a |
11.因式分解:a2﹣6a+9=_____ .
12.截止2016年4月28日,电影《美人鱼》的累计票房达到大约3390000000元,数据3390000000用科学记数法表示为 .
13.如图,若点A的坐标为,则sin∠1= .
14.将一矩形纸条按如图所示折叠,若∠1=40°,则∠2=____ °.
15.如图,△ABC是等边三角形,BD平分∠ABC,点E在BC的延长线上,且CE=1,∠E=30°,则BC=____ .
16.如图1~4,在直角边分别为3和4的直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,依此类推,图10中有10个直角三角形的内切圆,它们的面积分别记为S1,S2,S3,…,S10,则S1+S2+S3+…+S10=______ .
17.计算:.
18.先化简再求值:,其中.
19.解不等式组:,并把解集在数轴上表示出来.
20.如图,是的直径,C是上一点,,.
(1)求证:是的切线;
(2)若,,求的值.
(1)求证:是的切线;
(2)若,,求的值.
21.某中学需在短跑、长跑、跳远、跳高四类体育项目中各选拔一名同学参加市中学生运动会.根据平时成绩,把各项目进入复选的学生情况绘制成如下不完整的统计图:
(1)参加复选的学生总人数为 人,扇形统计图中短跑项目所对应圆心角的度数为 °;
(2)补全条形统计图,并标明数据;
(3)求在跳高项目中男生被选中的概率.
(1)参加复选的学生总人数为 人,扇形统计图中短跑项目所对应圆心角的度数为 °;
(2)补全条形统计图,并标明数据;
(3)求在跳高项目中男生被选中的概率.
22.图1是某公交公司1路车从起点站A站途经B站和C站,最终到达终点站D站的格点站路线图.(8×8的格点图是由边长为1的小正方形组成)
(1)求1路车从A站到D站所走的路程(精确到0.1);
(2)在图2、图3和图4的网格中各画出一种从A站到D站的路线图.(要求:①与图1路线不同、路程相同;②途中必须经过两个格点站;③所画路线图不重复)
(1)求1路车从A站到D站所走的路程(精确到0.1);
(2)在图2、图3和图4的网格中各画出一种从A站到D站的路线图.(要求:①与图1路线不同、路程相同;②途中必须经过两个格点站;③所画路线图不重复)
23.某网店尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品售后,经过统计得到此商品单价在第x天(x为正整数)销售的相关信息,如表所示:
(1)请计算第几天该商品单价为25元/件;
(2)求网店销售该商品30天里所获利润y(元)关于x(天)的函数关系式;
(3)这30天中第几天获得的利润最大;最大利润是多少.
销售量n(件) | n=50﹣x |
销售单价m(元/件) | 当1≤x≤20时,m=20+x |
当21≤x≤30时,m=10+ |
(1)请计算第几天该商品单价为25元/件;
(2)求网店销售该商品30天里所获利润y(元)关于x(天)的函数关系式;
(3)这30天中第几天获得的利润最大;最大利润是多少.
24.已知△ABC是等腰三角形,AB=AC.
(1)特殊情形:如图1,当DE∥BC时,有DB EC.(填“>”,“<”或“=”)
(2)发现探究:若将图1中的△ADE绕点A顺时针旋转α(0°<α<180°)到图2位置,则(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.
(3)拓展运用:如图3,P是等腰直角三角形ABC内一点,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度数.
(1)特殊情形:如图1,当DE∥BC时,有DB EC.(填“>”,“<”或“=”)
(2)发现探究:若将图1中的△ADE绕点A顺时针旋转α(0°<α<180°)到图2位置,则(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.
(3)拓展运用:如图3,P是等腰直角三角形ABC内一点,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度数.
25.已知抛物线y=﹣+bx+c与y轴交于点C,与x轴的两个交点分别为A(﹣4,0),B(1,0).
(1)求抛物线的解析式;
(2)已知点P在抛物线上,连接PC,PB,若△PBC是以BC为直角边的直角三角形,求点P的坐标;
(3)已知点E在x轴上,点F在抛物线上,是否存在以A,C,E,F为顶点的四边形是平行四边形?若存在,请直接写出点E的坐标;若不存在,请说明理由.
(1)求抛物线的解析式;
(2)已知点P在抛物线上,连接PC,PB,若△PBC是以BC为直角边的直角三角形,求点P的坐标;
(3)已知点E在x轴上,点F在抛物线上,是否存在以A,C,E,F为顶点的四边形是平行四边形?若存在,请直接写出点E的坐标;若不存在,请说明理由.