全一卷
1.2016的相反数是()
A.2016 | B.﹣2016 | C. | D.﹣ |
2.若代数式x+2的值为1,则x等于( )
A.1 | B.-1 | C.3 | D.-3 |
3.如图是由四个相同的小正方体组成的几何体,则它的主视图为( )
A. | B. | C. | D. |
4.某班7名女生的体重(单位:kg)分别是35、37、38、40、42、42、74,这组数据的众数是( )
A.74 | B.44 | C.42 | D.40 |
5.下列计算中,正确的是()
A.(a3)4=a12 | B.a3•a5=a15 | C.a2+a2=a4 | D.a6÷a2=a3 |
6.省政府提出 2016 年要实现180 000 农村贫困人口脱贫的目标,数据180 000 用科学记数法表示为( )
A.1.8× 103 | B.1.8× 104 |
C.1.8× 105 | D.1.8× 106 |
7.解分式方程+1=0,正确的结果是()
A.x=0 | B.x=1 | C.x=2 | D.无解 |
8.面积为2的正方形的边长在( )
A.0和1之间 | B.1和2之间 | C.2和3之间 | D.3和4之间 |
9.某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图所示,则下列说法正确的是( )
A.该村人均耕地面积随总人口的增多而增多 |
B.该村人均耕地面积y与总人口x成正比例 |
C.若该村人均耕地面积为2公顷,则总人口有100人 |
D.当该村总人口为50人时,人均耕地面积为1公顷 |
10.在平面直角坐标系中,将△AOB绕原点O顺时针旋转180°后得到△A1OB1,若点B的坐标为(2,1),则点B的对应点B1的坐标为( )
A.(1,2) | B.(2,-1) | C.(-2,1) | D.(-2,-1) |
11.三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是( )
A. | B. | C. | D. |
12.如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P = 40°,则∠ABC的度数为( )
A.35° | B.25° | C.40° | D.50° |
13.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为( )
A.30° | B.45° | C.60° | D.75° |
14.如图,AD是的中线,,把沿着直线AD对折,点C落在点E的位置.如果,那么线段的长度为( )
A.6 | B.6 | C.2 | D.3 |
15.因式分解:ax﹣ay=_____ .
16.某工厂去年的产值是a万元,今年比去年增加10%,今年的产值是__ 万元.
17.如图,AB是⊙O的直径,AC、BC是⊙O的弦,直径DE⊥AC于点P.若点D在优弧ABC上,AB=8,BC=3,则DP=_____ .
18.如图,四边形ABCD是轴对称图形,且直线AC是对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD∥BC;③四边形ABCD是菱形;④.其中正确的是_____ (只填写序号)
19.计算:
(1)6÷(﹣3)+﹣8×2﹣2;
(2)解不等式组:.
(1)6÷(﹣3)+﹣8×2﹣2;
(2)解不等式组:.
20.世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.
21.在太空种子种植体验实践活动中,为了解“宇番2号”番茄,某校科技小组随机调查60株番茄的挂果数量x(单位:个),并绘制如下不完整的统计图表:
“宇番2号”番茄挂果数量统计表
请结合图表中的信息解答下列问题:
(1)统计表中,a= ,b= ;
(2)将频数分布直方图补充完整;
(3)若绘制“番茄挂果数量扇形统计图”,则挂果数量在“35≤x<45”所对应扇形的圆心角度数为 °;
(4)若所种植的“宇番2号”番茄有1000株,则可以估计挂果数量在“55≤x<65”范围的番茄有 株.
“宇番2号”番茄挂果数量统计表
挂果数量x(个) | 频数(株) | 频率 |
25≤x<35 | 6 | 0.1 |
35≤x<45 | 12 | 0.2 |
45≤x<55 | a | 0.25 |
55≤x<65 | 18 | b |
65≤x<75 | 9 | 0.15 |
请结合图表中的信息解答下列问题:
(1)统计表中,a= ,b= ;
(2)将频数分布直方图补充完整;
(3)若绘制“番茄挂果数量扇形统计图”,则挂果数量在“35≤x<45”所对应扇形的圆心角度数为 °;
(4)若所种植的“宇番2号”番茄有1000株,则可以估计挂果数量在“55≤x<65”范围的番茄有 株.
22.如图,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A、C、E在同一直线上.
(1)求斜坡CD的高度DE;
(2)求大楼AB的高度(结果保留根号)
(1)求斜坡CD的高度DE;
(2)求大楼AB的高度(结果保留根号)
23.如图1,在矩形ABCD中,BC>AB,∠BAD的平分线AF与BD.BC分别交于点E、F,点O是BD的中点,直线OK∥AF,交AD于点K,交BC于点G.
(1)求证:①△DOK≌△BOG;②AB+AK=BG;
(2)若KD=KG,BC=.
①求KD的长度;
②如图2,点P是线段KD上的动点(不与点D、K重合),PM∥DG交KG于点M,PN∥KG交DG于点N,设PD=m,当S△PMN=时,求m的值.
(1)求证:①△DOK≌△BOG;②AB+AK=BG;
(2)若KD=KG,BC=.
①求KD的长度;
②如图2,点P是线段KD上的动点(不与点D、K重合),PM∥DG交KG于点M,PN∥KG交DG于点N,设PD=m,当S△PMN=时,求m的值.
24.如图1,抛物线y=ax2﹣6x+c与x轴交于点A(﹣5,0)、B(﹣1,0),与y轴交于点C(0,﹣5),点P是抛物线上的动点,连接PA、PC,PC与x轴交于点D.
(1)求该抛物线所对应的函数解析式;
(2)若点P的坐标为(﹣2,3),请求出此时△APC的面积;
(3)过点P作y轴的平行线交x轴于点H,交直线AC于点E,如图2.
①若∠APE=∠CPE,求证:=;
②△APE能否为等腰三角形?若能,请求出此时点P的坐标;若不能,请说明理由.
(1)求该抛物线所对应的函数解析式;
(2)若点P的坐标为(﹣2,3),请求出此时△APC的面积;
(3)过点P作y轴的平行线交x轴于点H,交直线AC于点E,如图2.
①若∠APE=∠CPE,求证:=;
②△APE能否为等腰三角形?若能,请求出此时点P的坐标;若不能,请说明理由.