全一卷
1.如图所示,点P到直线l的距离是( )
A.线段PA的长度 | B.线段PB的长度 | C.线段PC的长度 | D.线段PD的长度 |
2.若代数式有意义,则实数的取值范围是( )
A.=0 | B.=4 | C.≠0 | D.≠4 |
3.如图是某个几何体的展开图,该几何体是( )
A.三棱柱 | B.圆锥 | C.四棱柱 | D.圆柱 |
4.有理数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是( )
A.a>﹣4 | B.bd>0 | C.|a|>|b| | D.b+c>0 |
5.下列图形中,是轴对称图形但不是中心对称图形的是( )
A. | B. | C. | D. |
6.若正多边形的一个内角是150°,则该正多边形的边数是( )
A.6 | B.12 | C.16 | D.18 |
7.(2017北京市,第7题,3分)如果,那么代数式的值是( )
A.﹣3 | B.﹣1 | C.1 | D.3 |
8.(2017北京市)下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况.
2011﹣2016年我国与东南亚地区和东欧地区的贸易额统计图
(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》)
根据统计图提供的信息,下列推理不合理的是( )
2011﹣2016年我国与东南亚地区和东欧地区的贸易额统计图
(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》)
根据统计图提供的信息,下列推理不合理的是( )
A.与2015年相比,2016年我国与东欧地区的贸易额有所增长 |
B.2011﹣2016年,我国与东南亚地区的贸易额逐年增长 |
C.2011﹣2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元 |
D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多 |
9.小苏和小林在如图①所示的跑道上进行米折返跑.在整个过程中,跑步者距起跑线的距离(单位:)与跑步时间(单位:)的对应关系如图②所示.下列叙述正确的是( ).
A.两人从起跑线同时出发,同时到达终点 |
B.小苏跑全程的平均速度大于小林跑全程的平均速度 |
C.小苏前跑过的路程大于小林前跑过的路程 |
D.小林在跑最后的过程中,与小苏相遇2次 |
10.如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.
下面有三个推断:
①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;
②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;
③若再次用计算机模拟此实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.620.
其中合理的是( )
下面有三个推断:
①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;
②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;
③若再次用计算机模拟此实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.620.
其中合理的是( )
A.① | B.② | C.①② | D.①③ |
11.请写出一个比2大且比4小的无理数:________ .
12.某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为元,足球的单价为元,依题意,可列方程组为____________ .
13.如图,在△ABC中,P,Q分别为AB,AC的中点.若S△APQ=1,则S四边形PBCQ=__.
14.如图,AB为⊙O的直径,C、D为⊙O 上的点,AD=CD.若∠CAB=40°,则∠ CAD=__________ .
15.如图,在平面直角坐标系中,△AOB可以看作是△OCD经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一中由△OCD 得到△AOB 的过程:__________ .
16.下图是“作已知直角三角形的外接圆”的尺规作图过程
已知:Rt△ABC ,∠C=90°,求作Rt△ABC 的外接圆.
作法:如图.
(1)分别以点A和点B为圆心,大于 AB的长为半径作弧,两弧相交于P,Q两点;
(2)作直线PQ,交AB于点O;
(3)以O为圆心,OA为半径作⊙O.
⊙O 即为所求作的圆.
请回答:该尺规作图的依据是__________.
已知:Rt△ABC ,∠C=90°,求作Rt△ABC 的外接圆.
作法:如图.
(1)分别以点A和点B为圆心,大于 AB的长为半径作弧,两弧相交于P,Q两点;
(2)作直线PQ,交AB于点O;
(3)以O为圆心,OA为半径作⊙O.
⊙O 即为所求作的圆.
请回答:该尺规作图的依据是__________.
17.计算:.
18.解不等式组: .
19.如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D.
求证:AD=BC.
求证:AD=BC.
20.数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.,
(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)
请根据上图完成这个推论的证明过程.
证明:S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(____________+____________).
易知,S△ADC=S△ABC,_____________=______________,______________=_____________.
可得S矩形NFGD= S矩形EBMF .
(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)
请根据上图完成这个推论的证明过程.
证明:S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(____________+____________).
易知,S△ADC=S△ABC,_____________=______________,______________=_____________.
可得S矩形NFGD= S矩形EBMF .
21.已知关于x的方程
(1)求证:方程总有两个实数根
(2)若方程有一个小于1的正根,求实数k的取值范围
(1)求证:方程总有两个实数根
(2)若方程有一个小于1的正根,求实数k的取值范围
22.如图,在四边形ABCD中,BD为一条对角线,AD∥BC,AD=2BC,∠ABD=90°,E为AD的中点,连接B
A. (1)求证:四边形BCDE为菱形; (2)连接AC,若AC平分∠BAD,判断AC与CD的数量关系和位置关系,并说明理由. |
23.如图,在平面直角坐标系 中,函数的图象与直线交于点A(3,m).
(1)求k、m的值;
(2)已知点P(n,n)(n>0),过点P作平行于轴的直线,交直线y=x-2于点M,过点P作平行于y轴的直线,交函数 的图象于点N.
①当n=1时,判断线段PM与PN的数量关系,并说明理由;
②若PN≥PM,结合函数的图象,直接写出n的取值范围.
(1)求k、m的值;
(2)已知点P(n,n)(n>0),过点P作平行于轴的直线,交直线y=x-2于点M,过点P作平行于y轴的直线,交函数 的图象于点N.
①当n=1时,判断线段PM与PN的数量关系,并说明理由;
②若PN≥PM,结合函数的图象,直接写出n的取值范围.
24.如图,AB是⊙O的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作⊙O的切线交CE的延长线于点D.
(1)求证:DB=DE;
(2)若AB=12,BD=5,求⊙O的半径.
25.某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.
收集数据
从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:
甲 78 86 74 81 75 76 87 70 75 90
75 79 81 70 74 80 86 69 83 77
乙 93 73 88 81 72 81 94 83 77 83
80 81 70 81 73 78 82 80 70 40
整理、描述数据
按如下分数段整理、描述这两组样本数据:
(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格)
分析数据
两组样本数据的平均数、中位数、众数如下表所示:
得出结论:
.估计乙部门生产技能优秀的员工人数为____________;
.可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)
收集数据
从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:
甲 78 86 74 81 75 76 87 70 75 90
75 79 81 70 74 80 86 69 83 77
乙 93 73 88 81 72 81 94 83 77 83
80 81 70 81 73 78 82 80 70 40
整理、描述数据
按如下分数段整理、描述这两组样本数据:
成绩 人数 部门 | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
甲 | 0 | 0 | 1 | 11 | 7 | 1 |
乙 |
|
|
|
|
|
|
分析数据
两组样本数据的平均数、中位数、众数如下表所示:
部门 | 平均数 | 中位数 | 众数 |
甲 | 78.3 | 77.5 | 75 |
乙 | 78 | 80.5 | 81 |
.估计乙部门生产技能优秀的员工人数为____________;
.可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)
26.如图,P是弧AB所对弦AB上一动点,过点P作PM⊥AB交AB于点M,连接MB,过点P作PN⊥MB于点N.已知AB =6cm,设A 、P两点间的距离为xcm,P、N两点间的距离为ycm.(当点P与点A或点B重合时,y的值为0)
小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小东的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了x与y的几组值,如下表:
(说明:补全表格时相关数值保留一位小数)
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.
(3)结合画出的函数图象,解决问题:当△PAN为等腰三角形时,AP的长度约为____________cm.
小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小东的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了x与y的几组值,如下表:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y/cm | 0 | 2.0 | 2.3 | 2.1 | 0.9 | 0 |
(说明:补全表格时相关数值保留一位小数)
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.
(3)结合画出的函数图象,解决问题:当△PAN为等腰三角形时,AP的长度约为____________cm.
27.在平面直角坐标系中,抛物线y=x2-4x+3与x轴交于点A 、B(点A在点B的左侧),与y轴交于点C.
(1)求直线BC的表达式;
(2)垂直于y轴的直线l与抛物线交于点 ,与直线BC交于点,若x1<x2<x3,结合函数的图象,求x1+x2+x3的取值范围.
(1)求直线BC的表达式;
(2)垂直于y轴的直线l与抛物线交于点 ,与直线BC交于点,若x1<x2<x3,结合函数的图象,求x1+x2+x3的取值范围.
28.在等腰直角△ABC中,∠ACB=90°,P是线段BC上一动点(与点B、C不重合),连接AP,延长BC至点Q,使得CQ=CP,过点Q作QH⊥AP于点H,交AB于点M.
(1)若∠PAC=α,求∠AMQ的大小(用含α的式子表示).
(2)用等式表示线段MB与 PQ之间的数量关系,并证明.
(1)若∠PAC=α,求∠AMQ的大小(用含α的式子表示).
(2)用等式表示线段MB与 PQ之间的数量关系,并证明.
29.在平面直角坐标系中的点P和图形M,给出如下的定义:若在图形M存在一点Q,使得P、Q两点间的距离小于或等于1,则称P为图形M的关联点.
(1)当⊙O的半径为2时,
①在点 中,⊙O的关联点是_______________.
②点P在直线y=-x上,若P为⊙O 的关联点,求点P的横坐标的取值范围.
(2)⊙C 的圆心在x轴上,半径为2,直线y=-x+1与x轴、y轴交于点A、B.若线段AB上的所有点都是⊙C的关联点,直接写出圆心C的横坐标的取值范围.
(1)当⊙O的半径为2时,
①在点 中,⊙O的关联点是_______________.
②点P在直线y=-x上,若P为⊙O 的关联点,求点P的横坐标的取值范围.
(2)⊙C 的圆心在x轴上,半径为2,直线y=-x+1与x轴、y轴交于点A、B.若线段AB上的所有点都是⊙C的关联点,直接写出圆心C的横坐标的取值范围.